Relaxation and the Dynamics of Staircase Formation: Some Physics Beyond the Color VGs

P. H. Diamond

U.C.S.D.

General Comments

- ➢ Relaxation theories are useful to understand basic trends and to guide numerical experiments.
 Need improve relaxation ↔ dynamics connection → "routes to relaxation"
- There is a relation between turbulent relaxation and staircase formation, BUT:
- ➤ That relation is <u>not</u> simple and not fully understood → multi-stage relaxation scenario ?!
- Indeed, the precise meaning of "staircase" merits some care.

Re: "Staircases"

- Staircases are a well developed subject (prior 1972) and appear outside of GFD realm.
- Interesting and useful <u>analytical</u> models have been developed. More to the story than color VG's
- There is a relationship between staircases and first order transition patterns.

This Tutorial

- Addresses both relaxation dynamics and staircase formation, aims to connect these
- ➢ Primarily <u>analytical</u> in approach → emphasis on variety of reduced models
- Primarily, though not exclusively, focused on applications to GFD, simple drift wave models
- > Aims to relate/connect to MFE modelling issues

➢ Not a review

Collaborators

- Pei-Chun Hsu Steve Tobias Steve Tobias
- Mischa Malkov David Hughes
 Staircase models
- Ozgur Gurcan
 Yusuke Kosuga
 Jams theory
 Zhibin Guo

Guilhem Dif-Pradalier: ExB staircase computations

<u>Outline</u>

- Basic Concepts PV Dynamics and QG Flows
- Minimum Enstrophy Relaxation
 - a) Model Minimum Enstrophy Relaxation
 - b) Rationale and Final States
 - c) Dynamics \rightarrow Structural Constraints on PV Flux
 - d) Implications \rightarrow

- Staircases (emphasis on formation)
 - a) PV and otherwise
- * b) Singular (Transport Bifurcation) Modulations
 - a) Phillips, Balmforth and Beyond
 - b) Return to QG
 - \rightarrow length scales, PV mixing, structures
 - a) Jams and Jamming Waves
 - \rightarrow time delay
- Discussion
 - -- just what is a staircase (apart pretty pics)?
 - -- open <u>theoretical</u> issues?

Basic Aspects of PV Dynamics

Geophysical fluids

- Phenomena: weather, waves, large scale atmospheric and oceanic circulations, water circulation, jets...
- Geophysical fluid dynamics (GFD): low frequency ($\omega < \Omega$)

"We might say that the atmosphere is a musical instrument on which one can play many tunes. High notes are sound waves, low notes are long inertial waves, and nature is a musician more of the Beethoven than the Chopin type. He much prefers the low notes and only occasionally plays ("Turing's arpeggios in the treble and then only with a light hand." – J.G. Charney Cathedral")

• Geostrophic motion: balance between the Coriolis force and pressure gradient

Kelvin's theorem – unifying principle

Drift wave model – Fundamental prototype

• Hasegawa-Wakatani : simplest model incorporating instability

$$V = \frac{c}{B} \hat{z} \times \nabla \phi + V_{pol}$$

$$J_{\perp} = n |e| V_{pol}^{i} \qquad \eta J_{\parallel} = -\nabla_{\parallel} \phi + \nabla_{\parallel} p_{e}$$

$$\nabla_{\perp} \cdot J_{\perp} + \nabla_{\parallel} J_{\parallel} = 0 \qquad \Rightarrow \text{ vorticity: } \rho_{s}^{2} \frac{d}{dt} \nabla^{2} \phi = -D_{\parallel} \nabla_{\parallel}^{2} (\phi - n) + v \nabla^{2} \nabla^{2} \phi$$

$$\frac{dn_{e}}{dt} + \frac{\nabla_{\parallel} J_{\parallel}}{-n_{0} |e|} = 0 \qquad \Rightarrow \text{ density: } \frac{d}{dt} n = -D_{\parallel} \nabla_{\parallel}^{2} (\phi - n) + D_{0} \nabla^{2} n$$

$$\Rightarrow \text{ in inviscid limit: } PV \text{ conservation } \frac{d}{dt} (n - \nabla^{2} \phi) = 0$$

$$\Rightarrow PV \text{ flux = particle flux + vorticity flux } QL: \frac{\partial}{\partial t} \langle n \rangle = -\frac{\partial}{\partial r} \langle \tilde{v}, \tilde{n} \rangle$$

$$\Rightarrow \text{ zonal flow being a counterpart of particle flux } \Rightarrow \frac{\partial}{\partial t} \langle \nabla^{2} \phi \rangle = -\frac{\partial}{\partial r} \langle \tilde{v}, \tilde{v}_{\phi} \rangle$$
Hasegawa-Mima ($D_{\parallel} k_{\parallel}^{2} / \omega >> 1 \rightarrow n \sim \phi$)

$$\frac{d}{dt} \left(\phi - \rho_s^2 \nabla^2 \phi \right) + \upsilon_* \partial_y \phi = 0$$

٠

PV conservation $\frac{dq}{dt} = 0$

Charney-Haswgawa-Mima equation

$$n = n_{0} + \tilde{n}$$

$$\tilde{n} \sim \frac{e\tilde{\phi}}{T}$$
H-W \rightarrow H-M:
$$\frac{1}{\omega_{ci}} \frac{\partial}{\partial t} \left(\nabla^{2} \phi - \rho_{s}^{-2} \phi \right) - \frac{1}{L_{n}} \frac{\partial}{\partial y} \phi + \frac{\rho_{s}}{L_{n}} J(\phi, \nabla^{2} \phi) = 0$$

Q-G:
$$\frac{\partial}{\partial t} \left(\nabla^{2} \psi - L_{d}^{-2} \psi \right) + \beta \frac{\partial}{\partial x} \psi + J(\psi, \nabla^{2} \psi) = 0$$

12

PV Transport

- Zonal flows are generated by nonlinear interactions/mixing and transport.
- In x space, zonal flows are driven by Reynolds stress

Taylor's Identity $\langle \tilde{v}_{y}\tilde{q} \rangle = -\frac{\partial}{\partial y} \langle \tilde{v}_{x}\tilde{v}_{y} \rangle \rightarrow PV$ flux fundamental to zonal flow formation Inhomogeneous PV mixing, not momentum mixing (dq/dt=0)

- Inhomogeneous PV mixing, not momentum mixing (dq/dt=0)
 → up-gradient momentum transport (negative-viscosity) not an enigma
- Reynolds stresses intimately linked to wave propagation

$$\langle \tilde{v}_x \tilde{v}_y \rangle \rightarrow \sum_{\underline{k}} k_x k_y |\hat{\phi}_k|^2$$

but:
 $\begin{cases} Wave-mixing, transport \\ duality \end{cases}$

$$\upsilon_{gy} = \frac{2k_x k_y \beta}{(k^2)^2} , \quad S_y = \upsilon_{gy} \varepsilon$$

c.f. Review: O.D. Gurcan, P.D.; J. Phys. A (2015) real space emphasis

Minimum Enstrophy Relaxation

Examples of Self-Organization Principles

 \rightarrow Turbulent Pipe Flow: (Prandtl \rightarrow She)

$$\sigma = -\nu_T \frac{\partial \langle v_y \rangle}{\partial x} \qquad \qquad \nu_T \sim v_* x \qquad \qquad \Rightarrow \langle v_y \rangle \sim v_* \ln x$$

Streamwise Momentum undergoes mixing

The original "profile consistency"

→ Magnetic Relaxation: (Woltjer-Taylor)

(RFP, etc) Minimize E_M at conserved global $H_M \Rightarrow$ Force-Free RFP profiles

 $* \rightarrow$ PV Homogenization/Minimum Enstrophy: (Taylor, Prandtl, Batchelor, Bretherton, ...)

- \rightarrow PV tends to mix and homogenize
- → Flow structures emergent from selective decay of potential enstrophy relative to kinetic energy
- \rightarrow Shakura-Sunyaev Accretion

 \rightarrow disk accretion enabled by outward viscous angular momentum flux

Observation

- Many commonalities though NOT isomorphism of magnetic and flow self-organization
- Specifically: Taylor Theory and Minimum Enstrophy Theory

	Magnetic (JB)	Flow (GI)
concept	topology	symmetry
process	turbulent reconnection	PV mixing
players	tearing modes, Alfven waves	drift wave turbulence
mean field	$EMF = \langle \tilde{v} \times \tilde{B} \rangle$	PV Flux = $\langle \tilde{v}_r \tilde{q} \rangle$
constraint	$\int d^3x {f A} \cdot {f B}$ conservation	Dual cascade (energy conservation)
outcome B-profiles		(Zonal) flow

Foundation: Dual Cascade

Upshot : Minimum Enstrophy State

(Bretherton and Haidvogel, 1976)

- -- idea : final state
 - -- potential enstrophy forward cascades to viscous dissipation
 - -- kinetic energy inverse cascades
 (drag?!)

- -- calculate macrostate by minimizing potential enstrophy Ω subject to conservation of kinetic energy E, i.e.
 - $\delta(\Omega + \mu E) = 0$

[n.b. can include topography]

 \rightarrow "Minimum Enstrophy Theory"

A Natural Question:

How exploit relaxation theory in dynamics?

Further Non-perturbative Approach for Flow!

PV mixing in space is essential in ZF generation.

Taylor identity:
$$\left< \tilde{\mathcal{U}}_{y} \nabla^{2} \tilde{\phi} \right> = -\partial_{y} \left< \tilde{\mathcal{U}}_{y} \tilde{\mathcal{U}}_{x} \right>$$

vorticity flux Reynolds force

Key: How represent inhomogeneous PV mixing

most treatment of ZF:

- -- perturbation theory
- -- modulational instability

(test shear + gas of waves)

~ linear theory based

-> physics of evolved PV mixing?-> something more general?

General structure of PV flux?

 \rightarrow relaxation principles!

non-perturb model 1: use selective decay principle

What form must the PV flux have so as to dissipate enstrophy while conserving energy?

non-perturb model 2: use joint reflection symmetry

What form must the PV flux have so as to satisfy the joint reflection symmetry principle for PV transport/mixing?

Using selective decay for flux

		minimum enstrophy relaxation (Bretherton & Haidvogel 1976)	nalogy (J.B. Taylor, 1974)
dual cascade	turbulence	2D hydro	3D MHD
	conserved quantity (constraint)	total kinetic energy	global magnetic helicity
	dissipated quantity (minimized)	fluctuation potential enstrophy	magnetic energy
	final state	minimum enstrophy state	Taylor state
		flow structure emergent	force free B field configuration
	structural approach	$\frac{\partial}{\partial t} \Omega < 0 \Longrightarrow \Gamma_E \Longrightarrow \Gamma_q$	$\frac{\partial}{\partial t}E_{M} < 0 \Longrightarrow \Gamma_{H}$ (Boozer, '86)

• flux? what can be said about dynamics?

→ structural approach (this work): What form must the PV flux have so as to dissipate enstrophy while conserving energy?

General principle based on general physical ideas \rightarrow useful for dynamical model ₂₁

<u>PV flux</u>

Structure of PV flux

$$\Gamma_{q} = \frac{1}{\langle v_{x} \rangle} \partial_{y} \left[\mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\langle v_{x} \rangle} \right) \right] = \frac{1}{\langle v_{x} \rangle} \partial_{y} \left[\mu \left(\frac{\langle q \rangle \partial_{y} \langle q \rangle}{\langle v_{x} \rangle^{2}} + \frac{\partial_{y}^{2} \langle q \rangle}{\langle v_{x} \rangle} \right) \right]$$

diffusion parameter calculated by perturbation theory, numerics...

drift and hyper diffusion of PV

<--> usual story : Fick's diffusion

characteristic scale $\ell_c \equiv \sqrt{\frac{\langle v_x \rangle}{\partial_y \langle q \rangle}}$ $\ell > \ell_c$: zonal flow growth $\ell < \ell_c$: zonal flow damping (hyper viscosity-dominated)

Rhines scale $L_R \sim \sqrt{\frac{U}{\beta}}$ $\ell > L_R$: wave-dominated $\ell < L_R$: eddy-dominated

What sets the "minimum enstrophy"

• Decay drives relaxation. The relaxation rate can be derived by linear perturbation theory about the minimum enstrophy state

$$\left\{ \begin{array}{l} \left\{ q \right\} = q_m(y) + \delta q(y,t) \\ \left\{ \phi \right\} = \phi_m(y) + \delta \phi(y,t) \\ \partial_y q_m = \lambda \partial_y \phi_m \\ \delta q(y,t) = \delta q_0 \exp(-\gamma_{rel}t - i\omega t + iky) \\ \end{array} \right\}$$

$$\left\{ \begin{array}{l} \gamma_{rel} = \mu \left(\frac{k^4 + 4\lambda k^2 + 3\lambda^2}{\langle \upsilon_x \rangle^2} - \frac{8q_m^2(k^2 + \lambda)}{\langle \upsilon_x \rangle^4} \right) \\ \omega_k = \mu \left(-\frac{4q_m k^3 + 10q_m k\lambda}{\langle \upsilon_x \rangle^3} - \frac{8q_m^3 k}{\langle \upsilon_x \rangle^5} \right) \\ \varepsilon_0 \\ \end{array} \right\}$$

$$relaxation$$

• The condition of relaxation (modes are damped):

 $\gamma_{rel} > 0 \implies k^2 > \frac{8q_m^2}{\langle v_x \rangle^2} - 3\lambda \implies \frac{8q_m^2}{\langle v_x \rangle^2} > 3\lambda \implies \forall \text{ Relates } q_m^2 \text{ with ZF and scale factor}$ $\implies \langle v_x \rangle^2 < \frac{3\lambda}{8q_m^2} \qquad \text{ZF can't grow arbitrarily large}$ $\implies 8 q_m^2 > \langle v_x \rangle^2 3\lambda \qquad \text{the 'minimum enstrophy' of relaxation,}$ related to scale

Role of turbulence spreading

- Turbulence spreading: tendency of turbulence to self-scatter and entrain stable regime
- Turbulence spreading is closely related to PV mixing because the transport/mixing of turbulence intensity has influence on Reynolds stresses and so on flow dynamics.
- PV mixing is related to turbulence spreading $\frac{\partial E}{\partial t} = \int \langle \phi \rangle \partial_y \Gamma_q = -\int \partial_y \langle \phi \rangle \Gamma_q \qquad \Rightarrow \Gamma_q = \frac{\partial_y \Gamma_E}{\partial_y \langle \phi \rangle}$

- condition of energy conservation
- The effective spreading flux of turbulence kinetic energy

$$\Gamma_{E} = -\int \Gamma_{q} \langle v_{x} \rangle dy = -\int \frac{1}{\langle v_{x} \rangle} \partial_{y} \left[\mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\langle v_{x} \rangle} \right) \right] \langle v_{x} \rangle dy = \mu \partial_{y} \left(\frac{\partial_{y} \langle q \rangle}{\langle v_{x} \rangle} \right) \right]$$

→ the gradient of $\partial_y \langle q \rangle / \langle v_x \rangle$, drives spreading → the spreading flux vanishes when $\partial_v \langle q \rangle / \langle v_x \rangle$ is homogenized

Discussion

- PV mixing ← forward enstrophy cascade ← hyper-viscosity
 → How to reconcile effective negative viscosity with the picture of diffusive mixing of PV in real space?
- A possible explanation of up-gradient transport of PV due to turbulence spreading

Staircases

Staircases are prominent in French Academia

PV staircase

relaxed state: homogenization of $\frac{\partial_y \langle q \rangle}{\langle v_x \rangle} \rightarrow \begin{array}{c} PV \text{ gradient large} \\ \text{where zonal flow large} \end{array}$

 \rightarrow Zonal flows track the PV gradient \rightarrow PV staircase

- Highly structured profile of the staircase is reconciled with the homogenization or mixing process required to produce it.
- Staircase may arise naturally as a consequence of minimum enstrophy relaxation.

Some Required Pictures of Self-Organization in France

Legion imitating a zonal flow

- E x B staircase
 (GDP, PD et al. 2010)
- driven system
- quasi-periodic E x B shear layers and $\nabla T_i/T_i$ corrugations
- step-scale \rightarrow avalanche outer scale
- Not correlated with q

n.b. 2010 paper written under UCSD by-line ...

How make a step? \rightarrow Inhomogeneous PV mixing

• PV mixing is the fundamental mechanism for zonal flow formation

\rightarrow PV staircacse

N.B. for ITG turbulence:

$$PV \rightarrow \alpha \hat{T}/T + \nabla^2 \phi$$

$$\delta PV = 0 \rightarrow \delta \left(\hat{T} / T \right) \Rightarrow -\delta \left(\nabla^2 \phi \right)$$

and shear flow formation

"What is the difference between a staircase and a nonlinear wave, and why would anyone care?"

- Senior UCSD Experimentalist

This is a staircase:

i.e. clear scale ordering $w < \Delta_{step} \ll L_{sys} \rightarrow barrier$

step layer width

 \rightarrow developed modulational wave

N.B.:

- Also mechanism:
 - − Staircase \rightarrow first order
 - − Wave \rightarrow second order
- Beware: both tilt eddys, shear, etc.

This is a nonlinear wave:

i.e. $w \sim \Delta$

c.f. Fujisawa, et al, mid 90's et. seq.

- Staircases are much more ubiquitous than in GK turbulence
- Stably stratified turbulence (late '60s) (ocean surface layer)
- Thermohaline convection
- Driven QG
- MHD (magneto-convection, magnetic buoyancy)
- All involve formation of sharp gradient steps, by mixing processes.
- Not all involve "shear suppression", etc.
- \rightarrow General phenomena

Thermohaline Layer Simulation (Radko, 2003)

Sharp interface formed colors \rightarrow salt concentration

Single layer

Staircase formed, followed by 'condensation' to single layer \rightarrow Merger events

- What is a staircase?
- Cf Phillips'72:

SHORTER CONTRIBUTION

(other approaches possible)

Turbulence in a strongly stratified fluid --- is it unstable?

O. M. PHILLIPS*

(Received 30 July 1971; in revised form 6 October 1971; accepted 6 October 1971)

Abstract—It is shown that if the buoyancy flux is a local property of turbulence in a stratified fluid that decreases sufficiently rapidly as the local Richardson number increases, then an initially linear density profile in a turbulent flow far from boundaries may become unstable with respect to small variations in the vertical density gradient. An initially linear profile will then become ragged; this possible instability may be associated on occasions with the formation of density microstructure in the ocean.

• Instability of mean + turbulence field requiring:

 $\delta \Gamma_b / \delta Ri < 0$; flux dropping with increased gradient

 $\Gamma_b = -D_b \nabla b, Ri = g \nabla b / (v')^2$

• Obvious similarity to transport bifurcation

- OK: Is there a "simple model" encapsulating the ideas?
- Balmforth, Llewellyn-Smith, Young 1998 → staircase in stirred stably stratified turbulence
- Idea: 1D $K \epsilon$ model

turbulence energy; with production, dissipation spreading

- Mean field evolution
- Diffusion: $\tilde{V} l_m \sim (\epsilon)^{\frac{1}{2}} l_{m i \kappa}$
- $-l_{m i \kappa} \rightarrow \text{mixing length ?!}$

• What is $l_{m ix}$?

$$1/l^{2} = 1/l_{f}^{2} + 1/l_{oz}^{2}$$

 l_{oz} : ~ Ozmidov scale

System mixes at steady state on scale of energy balance

~ balance of buoyancy production vs. dissipation

i.e.
$$\tilde{V}^3/l \sim g\langle \tilde{V} \ \delta b \rangle$$

 $\delta b \sim (\tilde{V}/(\tilde{V}/l)) \partial b / \partial z$
 $\Rightarrow 1/l_{oz} \approx (b_z/e)^{1/2}$
 $or V(l)/l \sim N \Rightarrow l_{oz}$
 \Rightarrow smallest "stratified" scale

The model

• Mean Field:

 $\partial_t b = \partial_z (D \partial_z b)$

 $D = e^{1/2}l$ $1/l^2 = 1/l_f^2 + 1/l_{oz}^2$ $e = \langle \tilde{V}^2 \rangle$

N.B.: Not a typo! No residual molecular diffusion!

• Fluctuations:

spreading Production
$$g\langle \tilde{V}\delta\rho \rangle$$

 \downarrow \downarrow_{1} \downarrow_{1} $e^{\frac{3}{2}}$ forcing $F \sim \sqrt{e} (u_{0}^{2} - e)$
 $\partial_{t}e = \partial_{z}D\partial_{z}e - le^{\frac{1}{2}}\partial_{z}b - \frac{e^{\frac{3}{2}}}{l} + F$
dissipation
N.B. $\partial_{t} \left(\int [e - zb] \right) = 0$ (energy balance)
40

- <u>Some observations</u>
 - No molecular diffusion branch ("neoclassical H-mode")
 Steep b_z balanced by dissipation, reduced l
 - Step layer set by turbulence spreading (N.B. interesting lesson for case when D_{neo} feeble i.e. particles)
 - Forcing acts to initiate fluctuations, but production
 - $(\sim b_z)$ is the main driver
 - Gradient-fluctuation energy balance is crucial
 - Can explore stability of initial uniform *e*, *b_z* field *→* akin
 modulation problem

• The physics: Negative Diffusion

"H-mode" like branch (i.e. residual collisional diffusion) is not input

- Usually no residual diffusion
- 'branch' upswing → nonlinear processes

- Instability driven by local transport bifurcation
- $\delta \Gamma_b / \delta \nabla b < 0$

➔ 'negative diffusion'

Negative slope Unstable branch

• Feedback loop $\Gamma_b \downarrow \rightarrow \nabla b \uparrow \rightarrow I \downarrow \rightarrow \Gamma_b \downarrow$

Critical element: $l \rightarrow \text{mixing length}$

• Some Results

Plot of b_z (solid) and e (dotted) at early time. Buoyancy flux is dashed \rightarrow near constant in core

Later time → more akin
expected "staircase pattern".
Some <u>condensation</u> into larger
scale structures has occurred.

• <u>Time Evolution</u>

 $b_{z} (\times 10^{4})$

- Time progression shows merger process – akin bubble competition for steps
- Suggests trend to merger into fewer, larger steps
- Relaxation description in terms of merger process!? i.e. population evolution
- Predict/control position of final large step?

<u>To QG</u>

- PV staircases observed in nature, and in the unnatural (i.e. codes)
- Formulate 'minimal' dynamical model ?! (n.b. Dritschel-McIntyre 2008 does not address dynamics)

Observe:

- 1D adequate: for ZF need 'inhomogeneous PV mixing' + 1 direction of symmetry
- Best formulate intensity dynamics in terms potential enstrophy $\epsilon = \langle \tilde{q}^2 \rangle$
- Length? : $\Gamma_q \partial \langle q \rangle / \partial y \sim \tilde{q}^3$ (production-dissipation balance)

•
$$\rightarrow l \sim \langle \tilde{q}^2 \rangle^{\frac{1}{2}} / \partial \langle q \rangle / \partial y \sim l_{Rhines}$$

<u>Model</u>

$$\begin{array}{l} \partial_t \langle q \rangle = \partial_y D \partial_y \langle q \rangle & \text{Dissipation} \\ \partial_t \epsilon - \partial_y D \partial_y \epsilon = D \left(\partial_y \langle q \rangle \right)^2 - \epsilon^{\frac{3}{2}} + F \leftarrow \text{Forcing} \\ \text{Where:} & \text{Spreading} & \text{Production} \\ \frac{1}{l^2} = \frac{1}{l_f^2} + \frac{1}{l_{Rh}^2} & l_{Rh}^2 = \epsilon / \left(\partial_y \langle q \rangle \right)^2 \\ D \sim l^2 \sqrt{\epsilon} & \partial_t \left(\frac{\langle q \rangle^2}{2} + \epsilon \right) = 0, \text{ to forcing, dissipation} \end{array}$$

Aside

- What of wave momentum?
- PV mixing $\leftarrow \rightarrow D\partial_y \langle q \rangle$

So
$$\rightarrow \langle \tilde{V}\tilde{q} \rangle \rightarrow \partial_y \langle \tilde{V}_y \tilde{V}_x \rangle \rightarrow \text{R.S.}$$

• But:

$$\mathsf{R.S.} \longleftrightarrow \langle k_x k_y \rangle \longleftrightarrow \mathcal{V}_{gy} E$$

→ Feedback:

$$\langle q \rangle' \uparrow \rightarrow l \downarrow \rightarrow \epsilon \downarrow \rightarrow D \downarrow$$
(Production)

Alternative

• Note:
$$l^2 = \frac{1}{1+1/l_{Rh}^2} \rightarrow \frac{1}{1+\langle q \rangle'^2/\epsilon}$$
 $(l_f \sim 1)$

• Reminiscent of weak turbulence perspective:

$$D = D_{pv} = \sum_{\vec{k}} \frac{\langle \tilde{V}^2 \rangle \Delta \omega_{\vec{k}}}{\omega_{\vec{k}}^2 + \Delta \omega_{\vec{k}}^2} \qquad \qquad \omega_{\vec{k}} = -k_x \langle q \rangle' / k^2$$
$$\Delta \omega_{\vec{k}} \approx k \tilde{V}_{\vec{k}}$$

Ala' Dupree'67:

$$D_{pv} \approx \frac{1}{k^2} \left(\sum_{\vec{k}} k^2 \langle \tilde{V}^2 \rangle_{\vec{k}} - \frac{k_x^2 (\langle q \rangle')^2}{(k^2)^2} \right)^{1/2}$$

Steeper $\langle q \rangle'$ quenches diffusion

$$D_{pv} \approx \frac{l_0^2 \epsilon^{\frac{1}{2}}}{1 + \frac{l_0^2}{\epsilon} (\langle q \rangle')^2}$$

- $\omega \text{ vs } \Delta \omega$ dependence gives D_{pv} roll-over with steepening
- Rhines scale appears naturally
- Recovers effectively same model

Physics:

- ① "Rossby wave elasticity' (MM) → steeper $\langle q \rangle'$ → stronger memory
- ② Distinct from shear suppression

Numerical Results

collapse of two steps into oneappears to proceed to infinityeps_0=0.1

14 \rightarrow 7 coalescence Contour plot shows grad Q Q, ϵ fixed at boundaries

Parameters: L^2=10^5 kappa =3

gradQ shown as a contour plot in preceding VG

30 --> 14 coalescence Contour plot shows grad Q Q, ϵ fixed at boundaries

Parameters: L^2=5.45*10^5 kappa =3 (unstable equilibrium) eps_0=2.23

What of Regimes with Avalanching?

\rightarrow Jams and Jamitons

Highlights

Observation of ExB staircases

→ Failure of conventional theory of avalanches (emergence of particular scale???)

Model extension from Burgers to telegraph

 $\partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T$ $\Rightarrow \tau \partial_t^2 \delta T + \partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T$

finite response time \rightarrow like drivers' response time in traffic

Analysis of telegraph eqn. predicts heat flux jam

- scale of jam comparable to staircase step

Towards a model

• How do we understand quasi-regular pattern of ExB staircase, generated from stochastic heat avalanche???

• An idea: jam of heat avalanche

corrugated profile ↔ ExB staircase

 \rightarrow corrugation of profile occurs by 'jam' of heat avalanche flux

* \rightarrow time delay between $Q[\delta T]$ and δT is crucial element

like drivers' response time in traffic

→ accumulation of heat increment
 → stationary corrugated profile

- How do we actually model heat avalanche 'jam' ??? \rightarrow origin in dynamics?
- N.B. Barenblatt first proposed relation of time delay to layering

Traffic jam dynamics: 'jamiton'

• A model for Traffic jam dynamics \rightarrow Whitham

$$egin{aligned} &
ho_t + (
ho v)_x = 0 \ &v_t + v v_x = -rac{1}{ au} \left\{ v - V(
ho) + rac{
u}{
ho}
ho_x
ight\} \end{aligned}$$

- ightarrow Instability occurs when $\tau >
 u/(
 ho_0^2 {V_0'}^2)$
 - $D_{eff} =
 u au
 ho_0^2 {V_0'}^2 < 0 \
 e$ clustering instability
- ightarrow Indicative of jam formation
- Simulation of traffic jam formation

- $ho
 ightarrow ext{car density}$
- $v \rightarrow$ traffic flow velocity
- $V(
 ho) rac{
 u}{
 ho}
 ho_x \; o$ an equilibrium traffic flow
 - $au
 ightarrow {
 m driver'}$ s response time

- http://math.mit.edu/projects/traffic/
- \rightarrow Jamitons (Flynn, et.al., '08)
- n.b. I.V.P. \rightarrow decay study

Heat avalanche dynamics model (`the usual')

Hwa+Kardar '92, P.D. + Hahm '95, Carreras, et al. '96, ... GK simulation, ... Dif-Pradalier '10

- δT :deviation from marginal profile \rightarrow conserved order parameter
- Heat Balance Eq.: $\partial_t \delta T + \partial_x Q[\delta T] = 0 \rightarrow$ up to source and noise
- Heat Flux $Q[\delta T]$? \rightarrow utilize symmetry argument, ala' Ginzburg-Landau
 - Usual: → joint reflectional symmetry (Hwa+Kardar'92, Diamond+Hahm '95)

lowest order \rightarrow Burgers equation

 $\partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T$

An extension of the heat avalanche dynamics

• An extension: a finite time of relaxation of *Q* toward SOC flux state

$$\begin{array}{ll} \partial_t Q = -\frac{1}{\tau} \left(Q - Q_0(\delta T) \right) & Q_0[\delta T] = \frac{\lambda}{2} \delta T^2 - \chi_2 \partial_x \delta T + \chi_4 \partial_x^3 \delta T \\ & (\text{Guyot-Krumhansl}) \end{array}$$

$$\rightarrow \text{In principle} \quad \tau(\delta T, Q_0) \iff \text{ large near criticality} (\sim \text{critical slowing down}) \end{array}$$

i.e. enforces time delay between δT and heat flux Soften flux-gradient relation

N.B.: Contrast quasi-linear theory!

• Dynamics of heat avalanche:

$$\partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T - \chi_4 \partial_x^4 \delta T - \tau \partial_t^2 \delta T$$

→ Burgers (P.D. + T.S.H. '95)

 \rightarrow Telegraph equation

n.b. model for heat evolution diffusion \rightarrow Burgers \rightarrow Telegraph

Relaxation time: the idea

- What is ' τ ' physically? \rightarrow Learn from traffic jam dynamics
- A useful analogy:

heat avalanche dynamics	traffic flow dynamics
temp. deviation from marginal profile	local car density
heat flux	traffic flow
mean SOC flux (ala joint relflection symmetry)	equilibrium, steady traffic flow
heat flux relaxation time	driver's response time

- driver's response can induce traffic jam
- jam in avalanche \rightarrow profile corrugation \rightarrow staircase?!?
- Key: instantaneous flux vs. mean flux

Analysis of heat avalanche dynamics via telegraph

- How do heat avalanches jam?
- Consider an initial avalanche, with amplitude δT_0 , propagating at the speed $v_0 = \lambda \delta T_0$

 \rightarrow turbulence model dependent

• Dynamics:

two characteristic propagation speeds

 \rightarrow In short response time (usual) heat flux wave propagates faster

→ In long response time, heat flux wave becomes slower and pulse starts overtaking. What happens???

Analysis of heat avalanche jam dynamics

- In large tau limit, what happens? → Heat flux jams!!
- Recall plasma response time akin to driver's response time in traffic dynamics
- negative heat conduction instability occurs (as in clustering instability in traffic jam dynamics)

$$\begin{split} \partial_t \widetilde{\delta T} + v_0 \partial_x \widetilde{\delta T} &= \chi_2 \partial_x^2 \widetilde{\delta T} - \chi_4 \partial_x^4 \widetilde{\delta T} - \tau \partial_t^2 \widetilde{\delta T} \\ &\to (\chi_2 - v_0^2 \tau) \partial_x^2 \widetilde{\delta T} - \chi_4 \partial_x^4 \widetilde{\delta T} \end{split}$$

<0 when overtaking \rightarrow clustering instability

n.b. akin to negative viscosity instability of ZF in DW turbulence

instead ZF as secondary mode in the gas of primary DW

→ Heat flux 'jamiton' as secondary mode in the gas of primary avalanches

Analysis of heat avalanche jam dynamics

• Growth rate of the jamiton instability

$$\gamma = -\frac{1}{2\tau} + \frac{1}{2\tau} \sqrt{\frac{r+1}{2} - 2\tau \chi_2 k^2 \left(1 + \frac{\chi_4 k^2}{\chi_2}\right)} \qquad r = \sqrt{\left\{4\tau \chi_2 k^2 \left(1 + \frac{\chi_4 k^2}{\chi_2}\right) - 1\right\}^2 + 16v_0^2 k^2 \tau^2}$$

• Threshold for instability

$$\tau > \frac{\chi_2}{v_0^2} \left(1 + \frac{\chi_4 k^2}{\chi_2} \right)$$

n.b. $1/\tau = 1/\tau[\mathcal{E}]$

 \rightarrow clustering instability strongest near criticality

ightarrow critical minimal delay time

• Scale for maximum growth

$$k^{2} \cong \frac{\chi_{2}}{\chi_{4}} \sqrt{\frac{\chi_{4}v_{0}^{2}}{4\chi_{2}^{3}}} \qquad \text{from} \qquad \frac{\partial\gamma}{\partial k^{2}} = 0 \implies 8\tau \frac{\chi_{4}^{2}}{\chi_{2}}k^{6} + 4\tau\chi_{4}k^{4} + 2\frac{\chi_{4}}{\chi_{2}}k^{2} + 1 - \frac{v_{0}^{2}\tau}{\chi_{2}} = 0$$

 \rightarrow staircase size, $\ \Delta^2_{stair}(\delta T)$, $\ \delta T$ from saturation: consider shearing

Scaling of characteristic jam scale

• Saturation: Shearing strength to suppress clustering instability

Jam growth
$$\rightarrow$$
 profile corrugation \rightarrow ExB staircase $\rightarrow v'_{E \times B}$

 \rightarrow estimate, only

$$ightarrow$$
 saturated amplitude: $\frac{\delta T}{T_i} \sim \frac{1}{v_{thi}\rho_i} \sqrt{\frac{\chi_4}{\tau}}$

• Characteristic scale

$$\Delta^2 \sim k^{-2}(\delta T) \sim \frac{2v_{thi}}{\lambda T_i} \rho_i \sqrt{\chi_2 \tau} \qquad \chi_2 \sim \chi_{neo}$$

- Geometric mean of ρ_i and $\sqrt{\chi_2 \tau}$: ambient diffusion length in 1 relaxation time - 'standard' parameters: $\Delta \sim 10 \Delta_c$

Discussion

 "Negative diffusion" / clustering instability common to both Phillips and Jam mechanisms

Phillips $\rightarrow \delta \Gamma / \delta \nabla b < 0 \rightarrow \Gamma$ nonlinearity

Jam $\rightarrow \chi_2 - V_0^2 \tau_{deby} < 0 \rightarrow \tau_d$ physics

∴ Negative diffusion a general staircase forming mechanism

➔ Staircase formation is a generic form of secondary pattern instability in gradient-driven turbulence. Should be treated on equal footing with zonal flow, streamer, ...

Fluctuation intensity profile of great interest

Discussion

- Similar to familiar transport bifurcation in $\delta\Gamma/\delta\nabla b < 0$
- <u>Different</u> in no "second state" supported by collisional transport
- Sets step width via turbulence spreading
- More general than $V'_{E \times B}$ suppression scenario
- Jam mechanism:
 - τ_d is key quantity
 - how do nonlinear couplings scatter flux? is central question

Re: Relaxation

- Relaxation theories generally predict "smooth" states
- Instructive to look at selective decay constraint on <u>flux</u>
- These can be modulationally unstable to staircases, etc.
- Is actual final state determined by structural merger process?
- Prediction ?! barrier location?
- General issue is type of nonlinear process in play:
 - Cascading
 - Modulational instability
 - Bubble competition

c.f. Mcwilliams '84

- Stage 1 : cascading
- Stage 2 : structure interaction
- → Is relaxation a multi-state process ??

Open Questions

- Staircase structure with spreading and residual diffusion?
- Staircase structure in inhomogeneous system → mesomicro interaction, profiled forcing?
- Multi-field staircase model (cf. experience with transport bifurcation → difficult!)
- Propagating solutions key: transit vs merger rate
- Noise effects (i.e. non-stationary forcing in time)
- Net flux drive
- \rightarrow Is relaxation a multi-stage process? Characterization?

Approach ?!

- Staircase solutions require self-consistent treatment of gradient
 But
- GK, full toroidal geometry etc. all seem overkill and unnecessary to explore fundamentals; pain/gain $\rightarrow \infty$
- Especially important to 'turn down' neoclassical transport, collisional flow damping to reveal strong nonlinearity

So

- Simplify model:
 - Darmet ?
 - Flux driven fluid models ?!

N.B. These have performed well in transport bifurcation studies

Bring on the prey...
Back-Up

A Simpler (?!) Problem: → Turbulent Pipe Flow

- Essence of confinement:
 - given device, sources; what profile is achieved?
 - $\tau_E = W/P_{in}$
- Related problem: Pipe flow (turbulent)

• Prandtl Mixing Length Theory (1932)

- Wall stress =
$$\rho V_*^2 = -\rho v_T \partial u / \partial x$$

eddy viscosity

- Absence of characteristic scale \rightarrow

 $v_T \sim V_* x$ $u \sim V_* \ln(x/x_0)$ $x \equiv mixing length, distance from wall$ Analogy with kinetic theory ...

$$v_T = v \rightarrow x_0$$
, viscous layer $\rightarrow x_0 = v/V_*$

Some key elements:

- Momentum flux driven process
- Turbulent diffusion model of transport eddy viscosity
- Mixing length:

~ $x \rightarrow$ macroscopic, eddys span system

 \rightarrow ~ flat profile

- Self-similarity in radius
- Cut-off when $v_T = v$
- Reduce drag by creation of buffer layer i.e. steeper gradient than inertial sublayer (by polymer)

Structural MFT:

- The question of Dynamics brings us to mean field theory (c.f. Moffat '78 and an infinity of others)

- Mean Field Theory \rightarrow how represent $\langle \tilde{v} \times \tilde{B} \rangle$?

 \rightarrow how relate to relaxation ?

- Caveat: Perturbative MFT assumes fluctuations are small and quasi-Gaussian. They are often NOT
- Structural Approach (Boozer): (plasma frame)

 $\langle \mathbf{E} \rangle = \eta \langle \mathbf{J} \rangle + \langle \mathbf{S} \rangle \rightarrow$ 'something'

 $\langle S \rangle$ conserves H_M Note this is ad-hoc, forcing $\langle S \rangle$ to $\langle S \rangle$ dissipates E_M fit the conjecture. Not systematic.

Now

$$\partial_t H_M = -2c\eta \int d^3x \langle \mathbf{J} \cdot \mathbf{B} \rangle - 2c \int d^3x \langle \mathbf{S} \cdot \mathbf{B} \rangle$$
$$\therefore \langle \mathbf{S} \rangle = \frac{\mathbf{B}}{B^2} \nabla \cdot \Gamma_H$$
$$\longrightarrow \text{ Helicity flux}$$

$$\partial_t \int d^3x rac{B^2}{8\pi} = -\int d^3x \left[\eta J^2 - {f \Gamma}_H \cdot
abla rac{\langle {f J}
angle \cdot {f B}}{B^2}
ight]$$

SO

$$\Gamma_{H}=-\lambda
abla (J_{\parallel}/B)$$

 \rightarrow simplest form consistent with Taylor

ightarrow turbulent hyper-resistivity $\lambda = \lambda [\langle \tilde{B}^2 \rangle]$ - 'parameter'

 \rightarrow Relaxed state: $\nabla(J_{\parallel}/B) \rightarrow 0$ homogenized current